Structural-Functional Changes in a Ti50Ni45Cu5 Alloy Caused by Training Procedures Based on Free-Recovery and Work-Generating Shape Memory Effect

Author:

Popa MihaiORCID,Lohan Nicoleta-MonicaORCID,Pricop BogdanORCID,Cimpoeșu Nicanor,Porcescu Marieta,Comăneci Radu Ioachim,Cazacu MariaORCID,Borza Firuța,Bujoreanu Leandru-GheorgheORCID

Abstract

Active elements made of Ti50Ni45Cu5 shape memory alloy (SMA) were martensitic at room temperature (RT) after hot rolling with instant water quenching. These pristine specimens were subjected to two thermomechanical training procedures consisting of (i) free recovery shape memory effect (FR-SME) and (ii) work generating shape memory effect (WG-SME) under constant stress as well as dynamic bending and RT static tensile testing (TENS). The structural-functional changes, caused by the two training procedures as well as TENS were investigated by various experimental techniques, including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and atomic force microscopy (AFM). Fragments cut from the active regions of trained specimens or from the elongated gauges of TENS specimens were analyzed by DSC, XRD, and AFM. The DSC thermograms revealed the shift in critical transformation temperatures and a diminution in specific absorbed enthalpy as an effect of training cycles. The DMA thermograms of pristine specimens emphasized a change of storage modulus variation during heating after the application of isothermal dynamical bending at RT. The XRD patterns and AMF micrographs disclosed the different evolution of martensite plate variants as an effect of FR-SME cycling and of being elongated upon convex surfaces or compressed upon concave surfaces of bent specimens. For illustrative reasons, the evolution of unit cell parameters of B19′ martensite, as a function of the number of cycles of FR-SME training, upon concave regions was discussed. AFM micrographs emphasized wider and shallower martensite plates on the convex region as compared to the concave one. With increasing the number of FR-SME training cycles, plates’ heights decreased by 84–87%. The results suggest that FR-SME training caused marked decreases in martensite plate dimensions, which engendered a decrease in specific absorbed enthalpy during martensite reversion.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior Si A Cercetarii Stiintifice Universitare

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3