A New Method to Aid Copy Testing of Paid Search Text Advertisements

Author:

Rutz Oliver J.1,Sonnier Garrett P.2,Trusov Michael3

Affiliation:

1. Marion B. Ingersoll Professor and Associate Professor of Marketing, University of Washington

2. Associate Professor of Marketing and Zale Corporation Centennial Fellow, University of Texas at Austin

3. Associate Professor of Marketing, University of Maryland

Abstract

The authors propose a new approach to evaluate the perceptions and performance of a large set of paid search ads. This approach consists of two parts. First, primary data on hundreds of ads are collected through paired comparisons of their relative ability to generate awareness, interest, desire, action, and click performance. The authors use the Elo algorithm, a statistical model calibrated on paired comparisons, to score the full set of ads on relative perceptions and click performance. The estimated scores validate the theoretical link between perceptions and performance. Second, the authors predict the perceptions and performance of new ads relative to the existing set using textual content metrics. The predictive model allows for direct effects and interactions of the text metrics, resulting in a “large p, small n” problem. They address this problem with a novel Bayesian implementation of the VANISH model, a penalized regression approach that allows for differential treatment of main and interaction effects, in a system of equations. The authors demonstrate that this approach ably forecasts relative ad performance by leveraging perceptions inferred from content alone.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3