Quantitative Trendspotting

Author:

Du Rex Yuxing1,Kamakura Wagner A.2

Affiliation:

1. Bauer College of Business, University of Houston

2. Fuqua School of Business, Duke University

Abstract

Trendspotting has become an important marketing intelligence tool for identifying and tracking general tendencies in consumer interest and behavior. Currently, trendspotting is done either qualitatively by trend hunters, who comb through everyday life in search of signs indicating major shifts in consumer needs and wants, or quantitatively by analysts, who monitor individual indicators, such as how many times a keyword has been searched, blogged, or tweeted online. In this study, the authors demonstrate how the latter can be improved by uncovering common trajectories hidden behind the coevolution of a large array of indicators. The authors propose a structural dynamic factor-analytic model that can be applied for simultaneously analyzing tens or even hundreds of time series, distilling them into a few key latent dynamic factors that isolate seasonal cyclic movements from nonseasonal, nonstationary trend lines. The authors demonstrate this novel multivariate approach to quantitative trendspotting in one application involving a promising new source of marketing intelligence—online keyword search data from Google Insights for Search—in which they analyze search volume patterns across 38 major makes of light vehicles over an 81-month period to uncover key common trends in consumer vehicle shopping interest.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3