Light rhythm and diet differently influence facets of the metabolic syndrome in WOKW rats

Author:

Klöting Ingrid1,Bahr Jeanette1,Wilke Barbara1,Lange Jörn2

Affiliation:

1. Department of Laboratory Animal Science, Medical Faculty, University of Greifswald, D-17495 Karlsburg, Germany;

2. Department of Trauma and Reconstructive Surgery, Medical Faculty, University of Greifswald, Greifswald, Germany

Abstract

It has previously been shown that high-calorie diet alters the function of the mammalian circadian clock and that obesity has an influence on circadian organization of hormone secretion. That prompted us to test whether inbred Wistar Ottawa Karlsburg W (RT1u) (WOKW) rats developing facets of the metabolic syndrome show changes in their metabolic profiles under different feeding conditions (high-fat, high-sugar versus control diet) and under two different 12 h:12 h light–dark (LD) cycles. At the age of four weeks, these rats were divided into four groups. Groups 1 and 2 were kept under initial LD cycle (lights on at 05:00 h). Group 1 was fed with a normal rat diet while group 2 received a high-fat, high-sugar diet from 10 up to the age of 21 weeks. Groups 3 and 4 were kept under a shifted LD cycle (lights on at 11:00 h). Group 3 was given a normal diet while group 4 received a high-fat, high-sugar diet from an age like groups 1 and 2. Several metabolic traits were studied during the observation period of 21 weeks. The blood samples were obtained 2 h before lights off. Body weight gain ( P < 0.001), leptin ( P < 0.001), triglycerides ( P < 0.001) and cholesterol ( P < 0.05) were significantly reduced in group 4 versus group 2, but comparable between control groups (1 versus 3). The insulin concentrations were reduced in groups 3 and 4 versus groups 1 and 2 without effect of diet. In conclusion, the results provide evidence that light conditions influence diet induced changes in phenotypic traits like body weight gain, lipids as well as hormone levels (insulin and leptin) in WOKW rats.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3