Helicobacter pyloriCagA induces ornithine decarboxylase upregulation via Src/MEK/ERK/c-Myc pathway: implication for progression of gastric diseases

Author:

Xu Xia12,Liu Zhifang12,Fang Ming1,Yu Han1,Liang Xiuming1,Li Xinpeng1,Liu Xianxi2,Chen Chunyan1,Jia Jihui1

Affiliation:

1. Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education

2. Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012, PR China

Abstract

Helicobacter pylori (H. pylori) dysregulates the expression of various genes resulting in gastric precursor lesions and cancer. Meanwhile, ornithine decarboxylase (ODC) is a key enzyme that catalyzes the formation of polyamines which are critical for cell growth. So far, the possible regulation of ODC by H. pylori and its virulence factors, and the associated mechanism in gastric epithelial cells remains undefined. In the present study, we found that cellular ODC protein was upregulated by wild-type H. pylori infection and ectopic expression of a cytotoxin-associated gene A (CagA). As a negative control, there was no such effect by cagA-mutant H. pylori infection. Results of signal protein inhibitor treatment demonstrated that the Src, MEK (mitogen-activated protein kinase kinase) and ERK (extracellular signal-regulated kinase) pathway was involved. Moreover, when c-Myc was inhibited, the stimulatory effect of CagA on ODC expression was abolished. Clinically, a positive correlation between c-Myc and ODC expression was observed in patient-derived abnormal gastric tissues. These results implied that the Src/MEK/ERK/c-Myc pathway was required for CagA-mediated ODC induction. Finally, inhibition of ODC expression led to decreased foci formation of gastric epithelial cells before and after H. pylori infection, and ODC protein was over-expressed in precancerous gastric lesions and primary gastric cancer. Collectively, our findings provide new insights into the mechanism behind H. pylori-infection-associated gastric diseases.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3