Homocysteine inhibits adipogenesis in 3T3-L1 preadipocytes

Author:

Wang Zhigang12,Dou Xiaobing23,Yao Tong2,Song Zhenyuan24

Affiliation:

1. College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P R China

2. Department of Kinesiology and Nutrition, University of Illinois at Chicago,1919 W Taylor Street, RM506G, Chicago, IL 60612, USA

3. College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P R China

4. Department of Pathology, University of Illinois Medical Center, Chicago, IL 60612, USA

Abstract

Hyperhomocysteinemia (HHcy) is a characteristic metabolic abnormality in several pathological conditions, including hypertension, diabetes and alcoholic liver disease. Emerging evidence indicates that adipose tissue contributes to HHcy and homocysteine (Hcy) conversely affects adipose tissue function. However, the specific effect of Hcyon adipogenesis is poorly understood. In the present study, we investigated the effects and mechanisms of Hcy on adipogenic process using 3T3-L1 preadipocytes, a well-established in vitro model for the study of adipogenesis. Confluent mouse embryo 3T3-L1 preadipocytes (D0) were exposed to differentiation cocktail for three days (D3). Then, cells were transferred to insulin-containing medium and re-fed every two days. Maturation of adipocytes was confirmed by Oil Red O staining of lipid droplets on day 7. Exogenous Hcy was added to the culture medium on either D0 or D3. At day 7, adipogenesis indices were measured. Our data indicated that both Hcy addition protocols suppressed adipogenic process, evidenced by decreased lipid accumulation and downregulated gene expressions of adipocyte protein 2 and peroxisome proliferator-activated receptor gamma (PPAR-gamma), implying that Hcy exerted inhibitory effects on both mitotic clonal expansion (MCE) stage and differentiation stage. Further study showed that Hcy suppresses MCE via decreasing retinoblastoma protein phosphorylation and E2F-1 protein expression. To delineate the critical involvement of PPAR-gamma in Hcy-induced suppression on adipogenesis, we employed rosiglitazone, a specific PPAR-gamma agonist, to replace insulin for the inductive stimulus of adipogenesis. Our results showed that Hcy suppressed rosiglitazone-induced adipogenesis in a similar fashion as this by insulin, suggesting that inhibition of PPAR-gamma transactivation was critically involved in the Hcy-induced inhibitory effect on adipogenesis. Taken together, our data indicate that Hcy suppressed adipogenesis in 3T3-L1 preadipocytes and the inhibition of PPAR-gamma transactivity may, at least partially, contribute to the suppressive effect.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3