Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis

Author:

Arumugam Madan Kumar,Chava Srinivas,Rasineni Karuna,Paal Matthew C.,Donohue Terrence M.,Osna Natalia A.,Kharbanda Kusum K.

Abstract

AbstractIt has been previously shown that chronic ethanol administration-induced increase in adipose tissue lipolysis and reduction in the secretion of protective adipokines collectively contribute to alcohol-associated liver disease (ALD) pathogenesis. Further studies have revealed that increased adipose S-adenosylhomocysteine (SAH) levels generate methylation defects that promote lipolysis. Here, we hypothesized that increased intracellular SAH alone causes additional related pathological changes in adipose tissue as seen with alcohol administration. To test this, we used 3-deazaadenosine (DZA), which selectively elevates intracellular SAH levels by blocking its hydrolysis. Fully differentiated 3T3-L1 adipocytes were treated in vitro for 48 h with DZA and analysed for lipolysis, adipokine release and differentiation status. DZA treatment enhanced adipocyte lipolysis, as judged by lower levels of intracellular triglycerides, reduced lipid droplet sizes and higher levels of glycerol and free fatty acids released into the culture medium. These findings coincided with activation of both adipose triglyceride lipase and hormone sensitive lipase. DZA treatment also significantly reduced adipocyte differentiation factors, impaired adiponectin and leptin secretion but increased release of pro-inflammatory cytokines, IL-6, TNF and MCP-1. Together, our results demonstrate that elevation of intracellular SAH alone by DZA treatment of 3T3-L1 adipocytes induces lipolysis and dysregulates adipokine secretion. Selective elevation of intracellular SAH by DZA treatment mimics ethanol’s effects and induces adipose dysfunction. We conclude that alcohol-induced elevations in adipose SAH levels contribute to the pathogenesis and progression of ALD.

Funder

National Institutes of Health grant

Merit Review grant from the U.S. Department of Veterans Affairs, Biomedical Laboratory Research and Development Service.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3