Effect of distinct sources of Ca2+ on cardiac hypertrophy in cardiomyocytes

Author:

Xu Hao1,Zhang Yali1,Sun Junqing1,Wei Jinhong1,Sun Lijun1,Zhang Jianbao1

Affiliation:

1. The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

It is believed that intracellular calcium (Ca2+) overload can cause the cardiac hypertrophy, but it is possible that the Ca2+ entering the cytoplasm through distinct pathways will induce various effects on cardiomyocytes. The aim of the present study is to explore the effect of different sources of Ca2+ on cardiomyocyte hypertrophy. The cardiomyocytes isolated from neonatal Sprague–Dawley rats were treated with three agents (ionomycin, caffeine and angiotensin II [Ang II]) that increased the intracellular Ca2+ concentration via different pathways. Treatments with ionomycin, caffeine and Ang II for 24 h caused a significant increase in resting [Ca2+]i by 108.0 ± 7.8%, 102.0 ± 6.9% and 59.8 ± 3.3%, respectively. Caffeine and Ang II increased the cell surface area of cardiomyocytes and the mRNA level of atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain, but ionomycin did not. Moreover, sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity and the amplitudes of the twitch [Ca2+]i transients were reduced in the caffeine-treated group and Ang II-treated group. Furthermore, cardiomyocyte hypertrophy induced by caffeine was inhibited by cyclosporin A (CsA) and KN93, whereas cardiomyocyte hypertrophy induced by Ang II was inhibited by KN93, but not CsA. Our results show that cardiomyocyte hypertrophy is associated with SERCA2a activity, contractile performance and signaling pathways of CaMKII and/or calcineurin, whereas the Ca2+ overload is not sufficient to cause the cardiomyocyte hypertrophy.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3