Role of chymase in diabetic nephropathy

Author:

Cristovam Priscila C1,Carmona Adriana K2,Arnoni Carine P1,Maquigussa Edgar1,Pereira Luciana G1,Boim Mirian A1

Affiliation:

1. Department of Medicine – Renal Division

2. Department of Biophysic, Federal University of São Paulo, 04023-900 São Paulo, SP, Brazil

Abstract

Chymase is an alternative pathway for angiotensin-converting enzyme in angiotensin II (Ang II) formation, and its expression is increased in human diabetic kidneys and in human mesangial cells (MCs) stimulated with high glucose. In addition, chymase activates transforming growth factor (TGF- β1) via an Ang II-independent pathway. The aim of this study was to evaluate the role of chymase on TGF- β1 activation in diabetic rats and in rat MCs (RMCs) stimulated with high glucose (HG). Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, intravenous). After 30 (D30) or 60 (D60) days, chymase activity and the expression of profibrotic markers were evaluated. RMCs were stimulated with HG in the presence or absence of 50 μmol/L chymostatin, a chymase inhibitor, or 100 nmol/L of losartan, an Ang II antagonist. Chymase activity and expression increased in D60 kidneys, with increased expression of fibronectin, type I and III collagen, TGF- β1 and Smad 3 and with no change in Smad 7 expression. RMCs exposed to HG presented increases in chymase activity and expression, together with upregulation in fibrosis markers and in the TGF- β1 signaling pathway. All these effects were reversed by chymostatin and by losartan, but type 1 angiotensin II receptor blockade did not interfere with the Smad 3 and 7 pathway. Similar to HG-stimulated RMCs, control RMCs treated with chymase responded with increased expression of TGF- β1, Smad 3 and fibrosis markers. These effects were reversed by chymostatin but not by losartan. The results indicate an important role for chymase in inducing fibrosis through TGF- β1 activation, parallel with Ang II effects.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3