Molecular dynamics simulations of rupture in lipid bilayers

Author:

Tomasini Michael D1,Rinaldi Carlos2,Tomassone M Silvina3

Affiliation:

1. Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8058, USA

2. Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

3. Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8058, USA

Abstract

Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles are acted upon by a high-frequency oscillating magnetic field. While the accepted mechanism is localized hyperthermia, it is plausible that shear stresses due to nanoparticles rotating near a cell membrane may induce rupture, enhancing the effectiveness of the treatment. With the goal of understanding this further, molecular dynamics simulations were carried out on a model cell membrane. A bilayer composed of dipalmitoylphosphatidylcholine lipids was subjected to an incremental tension as well as an incremental shear stress. In both cases, it was found that the bilayer could withstand a surface tension of approximately 90 mN/m prior to rupture. Under tension, the bilayer ruptured at double its initial area, whereas under shear, the bilayer ruptured at 1.8 times its initial area. The results show that both incremental tension and incremental shearing are able to produce bilayer rupture, with shear being more injurious, yielding a larger surface tension for a smaller deformation. This information allows for comparison between the estimated energy required to rupture a cell membrane and the energy that a magnetic nanoparticle would be able to generate while rotating in a cellular environment. Our estimates indicate that magnetically blocked nanoparticles with diameters larger than 50 nm may result in rupture due to shear.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3