Prediction of Chicken Diseases by Transfer Learning Method

Author:

BINGOL Mustafa Can1ORCID,BİLGİN Gürkan1ORCID

Affiliation:

1. BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ

Abstract

With the development of computing technologies, artificial intelligence is used in a wide range of areas, from engineering to healthcare. In this study, it was aimed to predict chicken diseases with transfer learning. For this purpose, a ready-made data set was studied. This data set contains fecal photographs of healthy chickens diagnosed with Coccidiosis, Newcastle and Salmonella diseases. The data set has been subjected to necessary pre-processing such as size readjustment. Subsequently, the data set, which was then subjected to pre-processing, was divided into 70% and 30% as training and testing. To solve the disease classification problem, a network was created by adding fully connected layers to ResNet50, InceptionV3, InceptionResNetV2, Xception and MobileNetV2 architectures. The weights of the architectures mentioned in these networks were selected as ImageNet and were not trained. Then, networks containing these architectures were trained using the training data set. The trained networks were validated with the test data set and accuracy rates of 32.7%, 80.6%, 85.2%, 89.2% and 90.7% were obtained, respectively. According to these results, MobileNetV2 was used in the proposed artificial neural network architecture since the best result was calculated using the MobileNetV2 architecture. The proposed artificial neural network architecture was trained with the same training set and validation was carried out with the same test data set. After these procedures, the true prediction rate of the proposed architecture for the test data set was calculated as 92.1%. Also, F1 score of the proposed architecture was measured 0.923. Additionally, thanks to the deconvolution layer used in the proposed architecture, network sizes have been reduced by approximately 50%. Thanks to this reduction, the training time is shortened and it becomes easier to implement it on embedded systems in future studies. As a result, the diseases of chickens were predicted largely accurately with the transfer learning method.

Publisher

International Scientific and Vocational Studies Journal

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3