Practical application of a safe human-robot interaction software

Author:

Bingol Mustafa Can,Aydogmus Omur

Abstract

Purpose Because of the increased use of robots in the industry, it has become inevitable for humans and robots to be able to work together. Therefore, human security has become the primary noncompromising factor of joint human and robot operations. For this reason, the purpose of this study was to develop a safe human-robot interaction software based on vision and touch. Design/methodology/approach The software consists of three modules. Firstly, the vision module has two tasks: to determine whether there is a human presence and to measure the distance between the robot and the human within the robot’s working space using convolutional neural networks (CNNs) and depth sensors. Secondly, the touch detection module perceives whether or not a human physically touches the robot within the same work environment using robot axis torques, wavelet packet decomposition algorithm and CNN. Lastly, the robot’s operating speed is adjusted according to hazard levels came from vision and touch module using the robot’s control module. Findings The developed software was tested with an industrial robot manipulator and successful results were obtained with minimal error. Practical implications The success of the developed algorithm was demonstrated in the current study and the algorithm can be used in other industrial robots for safety. Originality/value In this study, a new and practical safety algorithm is proposed and the health of people working with industrial robots is guaranteed.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference37 articles.

1. Safety control of industrial robots based on a distributed distance sensor;IEEE Transactions on Control Systems Technology,2014

2. Implementation of speech recognition for robot control using support vector machine,2018

3. İnsan-robot etkileşiminde insan güvenliği için çok kanallı iletişim kullanarak evrişimli sinir ağı tabanlı bir yazılımının geliştirilmesi ve uygulaması;Fırat Üniversitesi Müh. Bil. Dergisi,2019

4. Integration of robotic technologies for rapidly deployable robots;IEEE Transactions on Industrial Informatics,2018

5. Online robot teaching with natural human-robot interaction;IEEE Transactions on Industrial Electronics,2018

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3