Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice

Author:

Lyons Sulayman A.1ORCID,McClelland Grant B.1ORCID

Affiliation:

1. McMaster University Department of Biology , , Hamilton, ON L8S 4K1 , Canada

Abstract

ABSTRACT Highland native deer mice (Peromyscus maniculatus) have greater rates of lipid oxidation during maximal cold challenge in hypoxia (hypoxic cold-induced V̇O2,max) compared with their lowland conspecifics. Lipid oxidation is also increased in deer mice acclimated to simulated high altitude (cold hypoxia), regardless of altitude ancestry. The underlying lipid metabolic pathway traits responsible for sustaining maximal thermogenic demand in deer mice is currently unknown. The objective of this study was to characterize key steps in the lipid oxidation pathway in highland and lowland deer mice acclimated to control (23°C, 21 kPa O2) or cold hypoxic (5°C, 12 kPa O2) conditions. We hypothesized that capacities for lipid delivery and tissue uptake will be greater in highlanders and further increase with cold hypoxia acclimation. With the transition from rest to hypoxic cold-induced V̇O2,max, both highland and lowland deer mice showed increased plasma glycerol concentrations and fatty acid availability. Interestingly, acclimation to cold hypoxia led to increased plasma triglyceride concentrations at cold-induced V̇O2,max, but only in highlanders. Highlanders also had significantly greater delivery rates of circulatory free fatty acids and triglycerides due to higher plasma flow rates at cold-induced V̇O2,max. We found no population or acclimation differences in fatty acid translocase (FAT/CD36) abundance in the gastrocnemius or brown adipose tissue, suggesting that fatty acid uptake across membranes is not limiting during thermogenesis. Our data indicate that circulatory lipid delivery plays a major role in supporting the high thermogenic rates observed in highland versus lowland deer mice.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Function of left ventricle mitochondria in highland deer mice and lowland mice;Journal of Comparative Physiology B;2023-02-16

2. High-altitude deer mice depend on blood fuel supply for warmth;Journal of Experimental Biology;2022-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3