Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes

Author:

Blondin Denis P.1,Labbé Sébastien M.2,Noll Christophe1,Kunach Margaret1,Phoenix Serge13,Guérin Brigitte3,Turcotte Éric E.3,Haman François4,Richard Denis2,Carpentier André C.1

Affiliation:

1. Department of Medicine, Centre de Recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada

2. Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada

3. Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada

4. Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Spontaneous glucose uptake by brown adipose tissue (BAT) is lower in overweight or obese individuals and in diabetes. However, BAT metabolism has not been previously investigated in patients with type 2 diabetes during controlled cold exposure. Using positron emission tomography with 11C-acetate, 18F-fluoro-deoxyglucose (18FDG), and 18F-fluoro-thiaheptadecanoic acid (18FTHA), a fatty acid tracer, BAT oxidative metabolism and perfusion and glucose and nonesterified fatty acid (NEFA) turnover were determined in men with well-controlled type 2 diabetes and age-matched control subjects under experimental cold exposure designed to minimize shivering. Despite smaller volumes of 18FDG-positive BAT and lower glucose uptake per volume of BAT compared with young healthy control subjects, cold-induced oxidative metabolism and NEFA uptake per BAT volume and an increase in total body energy expenditure did not differ in patients with type 2 diabetes or their age-matched control subjects. The reduction in 18FDG-positive BAT volume and BAT glucose clearance were associated with a reduction in BAT radiodensity and perfusion. 18FDG-positive BAT volume and the cold-induced increase in BAT radiodensity were associated with an increase in systemic NEFA turnover. These results show that cold-induced NEFA uptake and oxidative metabolism are not defective in type 2 diabetes despite reduced glucose uptake per BAT volume and BAT “whitening.”

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Diabetes Association

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3