How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk

Author:

Blackledge Todd A.1,Boutry Cecilia1,Wong Shing-Chung2,Baji Avinash2,Dhinojwala Ali3,Sahni Vasav3,Agnarsson Ingi14

Affiliation:

1. Department of Biology, University of Akron, Akron, OH 44325, USA

2. Department of Mechanical Engineering, University of Akron, Akron, OH 44325,USA

3. Department of Polymer Science, Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA

4. Department of Biology, University of Puerto Rico, PO Box 23360, San Juan, PR 00931, USA

Abstract

SUMMARY Spider dragline silk has enormous potential for the development of biomimetic fibers that combine strength and elasticity in low density polymers. These applications necessitate understanding how silk reacts to different environmental conditions. For instance, spider dragline silk`supercontracts' in high humidity. During supercontraction, unrestrained dragline silk contracts up to 50% of its original length and restrained fibers generate substantial stress. Here we characterize the response of dragline silk to changes in humidity before, during and after supercontraction. Our findings demonstrate that dragline silk exhibits two qualitatively different responses to humidity. First, silk undergoes a previously unknown cyclic relaxation–contraction response to wetting and drying. The direction and magnitude of this cyclic response is identical both before and after supercontraction. By contrast, supercontraction is a `permanent' tensioning of restrained silk in response to high humidity. Here, water induces stress,rather than relaxation and the uptake of water molecules results in a permanent change in molecular composition of the silk, as demonstrated by thermogravimetric analysis (TGA). Even after drying, silk mass increased by∼1% after supercontraction. By contrast, the cyclic response to humidity involves a reversible uptake of water. Dried, post-supercontraction silk also differs mechanically from virgin silk. Post-supercontraction silk exhibits reduced stiffness and stress at yield, as well as changes in dynamic energy storage and dissipation. In addition to advancing understanding supercontraction, our findings open up new applications for synthetic silk analogs. For example, dragline silk emerges as a model for a biomimetic muscle, the contraction of which is precisely controlled by humidity alone.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3