Affiliation:
1. Centre for Biodiversity Dynamics, Department of Biology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
Abstract
Metabolic rate (MR) often scales with body mass (BM) following a power function of the form MR=aBMb, where b is the allometric exponent (i.e. slope on a log-log scale). The variational properties of b have been debated, but very few studies have tested for genetic variance in b, and none have tested for a genotype-by-environment (G×E) interaction in b. Consequently, the short-term evolutionary potentials of both b and its phenotypic plasticity remain unknown. Using 10 clones of a population of Daphnia magna, we estimated the genetic variance in b and assessed whether a G×E interaction affected b. We measured metabolic rate on juveniles of different sizes reared and measured at three temperatures (17, 22 and 28°C). Overall, b decreased with increasing temperature. We found no evidence of genetic variance in b at any temperature, and thus no G×E interaction in b. However, we found a significant G×E interaction in size-specific metabolic rate. Using simulations, we show how this G×E interaction can generate genetic variation in the ontogenetic allometric slope of animals experiencing directional changes in temperature during growth. This suggests that b can evolve despite having limited genetic variation at constant temperatures.
Funder
Norges Forskningsr?d
Norges Teknisk-Naturvitenskapelige Universitet
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献