Maximum Lift Production During Takeoff in Flying Animals

Author:

MARDEN JAMES H.1

Affiliation:

1. Department of Zoology, University of Vermont, Burlington, VT 05405, USA

Abstract

Maximum lift production during takeoff in still air was determined for a wide variety of insects and a small sample of birds and bats, and was compared with variation in morphology, taxonomy and wingbeat type. Maximum lift per unit flight muscle mass was remarkably similar between taxonomic groups (54–63 N kg−1), except for animals using clap-and-fling wingbeats, where muscle mass-specific lift increased by about 25 % (72–86 N kg−1). Muscle mass-specific lift was independent of body mass, wing loading, disk loading and aspect ratio. Birds and bats yielded results indistinguishable from insects using conventional wingbeats. Interspecific differences in short-duration powered flight and takeoff ability are shown to be caused primarily by differences in flight muscle ratio, which ranges from 0.115 to 0.560 among species studied to date. These results contradict theoretical predictions that maximum mass-specific power output and lift production should decrease with increasing body mass and wing disk loading.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3