Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus)

Author:

Rowsey Lauren E.1ORCID,Reeve Connor1ORCID,Savoy Tyler1,Speers-Roesch Ben1ORCID

Affiliation:

1. University of New Brunswick Saint John Department of Biological Sciences , , 100 Tucker Park Road, Saint John, NB E2L 4L5 , Canada

Abstract

ABSTRACT Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7­–8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1–3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26–2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5–8 weeks) to 14–2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8–2°C=1.5–4.9, mean=3.3) than above (Q10,acute14–8°C=1.1–1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8–2°C=1.4–3.0, mean=2.0; also cf. Q10,acclimated14–8°C=1.2–2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.

Funder

Natural Sciences and Engineering Research Council of Canada

Harrison McCain Foundation

New Brunswick Innovation Foundation

Canada Foundation for Innovation

University of New Brunswick

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Lauren Rowsey;Journal of Experimental Biology;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3