Effect of Total Dissolved Gas Supersaturation on Swimming Performance of Migratory Fish for Traversing Velocity Barriers

Author:

Yuan Quan,Zhang Zhiguang,Li Kefeng,Liang Ruifeng,Zhu Bo,Wang YuanmingORCID

Abstract

This study investigates the impact of total dissolved gas supersaturation (TDGS) on the swimming capabilities of migratory fish (S. prenanti), a common issue during high dam discharges in flood seasons. We assessed fish exposed to 130% TDGS for 2 hr, focusing on their swimming performance in a controlled environment. In our experiments, control group fish, utilizing prolonged swimming, showed reduced maximum distances as flow velocities increased from 3 to 10 BL/s (body length per second), covering distances between 1,285 and 119 BL. In contrast, TDGS‐exposed fish achieved only 15%–95% of these distances. Under burst swimming conditions, control group fish also demonstrated a decrease in maximum distances with increasing flow velocity, achieving 280–124 BL, while TDGS‐exposed fish reached just 48%–64% of these distances. Notably, the critical flow velocity (Ufcrit) for transitioning from prolonged to burst activity level was lower for the TDGS group (7.2 BL/s) compared with the control (9.8 BL/s). In open flume trials, TDGS‐exposed fish displayed a stronger upstream swimming inclination beyond Ufcrit, indicated by quicker times, higher speeds, and shorter trajectories. This study provides novel insights into the adaptive swimming strategies and flow velocity responses of fish under TDGS stress.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3