Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells

Author:

Ogawa Kazuya1,Saito Akira2,Matsui Hisanori1,Suzuki Hiroshi2,Ohtsuka Satoshi1,Shimosato Daisuke13,Morishita Yasuyuki2,Watabe Tetsuro2,Niwa Hitoshi13,Miyazono Kohei24

Affiliation:

1. Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan

2. Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Department of Developmental and Regenerative Medicine, Graduate School of Medicine, Kobe University, 7-5-1, Kusunokicho, Chuo-ku, Kobe 650-0017, Japan

4. Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Toshima-ku, Tokyo 170-8455, Japan

Abstract

Embryonic stem (ES) cells are self-renewing cells that maintain pluripotency to differentiate into all types of cells. Because of their potential to provide a variety of tissues for use in regenerative medicine, there is great interest in the identification of growth factors that govern these unique properties of ES cells. However, the signaling pathways controlling ES cell proliferation remain largely unknown. Since transforming growth factor β (TGFβ) superfamily members have been implicated in the processes of early embryogenesis, we investigated their roles in ES cell self-renewal. Inhibition of activin-Nodal-TGFβ signaling by Smad7 or SB-431542 dramatically decreased ES cell proliferation without decreasing ES pluripotency. By contrast, inhibition of bone morphogenetic protein (BMP) signaling by Smad6 did not exhibit such effects, suggesting that activin-Nodal-TGFβ signaling, but not BMP signaling, is indispensable for ES cell propagation. In serum-free culture, supplementation of recombinant activin or Nodal, but not TGFβ or BMP, significantly enhanced ES cell propagation without affecting pluripotency. We also found that activin-Nodal signaling was constitutively activated in an autocrine fashion in serum-free cultured ES cells, and that inhibition of such endogenous signaling by SB-431542 decreased ES cell propagation in serum-free conditions. These findings suggest that endogenously activated autocrine loops of activin-Nodal signaling promote ES cell self-renewal.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3