Cdk1 phosphorylation sites on Cdc27 are required for correct chromosomal localisation and APC/C function in syncytial Drosophila embryos

Author:

Huang Jun-Yong1,Morley Gary1,Li Deyu1,Whitaker Michael1

Affiliation:

1. Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK

Abstract

Anaphase-promoting complex or cyclosome (APC/C) controls the metaphase-to-anaphase transition and mitosis exit by triggering the degradation of key cell cycle regulators such as securin and B-type cyclins. However, little is known about the functions of individual APC/C subunits and how they might regulate APC/C activity in space and time. Here, we report that two potential Cdk1 kinase phosphorylation sites are required for the chromosomal localisation of GFP::Cdc27 during mitosis. Either or both of the highly conserved proline residues in the Cdk1 phosphorylation consensus sequence motifs were mutated to alanine (Cdc27 P304A or P456A). The singly mutated fusion proteins, GFP::Cdc27P304A and GFP::Cdc27P456A, can still localise to mitotic chromosomes in a manner identical to wild-type GFP::Cdc27 and are functional in that they can rescue the phenotype of the cdc27L7123 mutant in vivo. However, when both of the Cdk1 phosphorylation sequence motifs were mutated, the resulting GFP::Cdc27P304A,P456A construct was not localised to the chromosomes during mitosis and was no longer functional, as it failed to rescue mutant phenotypes of the cdc27L7123 gene. High levels of cyclin B and cyclin A were detected in mutant third instar larvae brain samples compared with its wild-type control. These results show for the first time that the two potential Cdk1 phosphorylation sites on Drosophila Cdc27 are required for its chromosomal localisation during mitosis and imply that these localisations specific to Cdc27 are crucial for APC/C functions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3