Abstract
AbstractThe timing of the M-phase entry and its progression are precisely controlled by a CDC6-dependent mechanism that inhibits the major mitotic kinase CDK1, and, thus, regulates the dynamic of CDK1 during the M-phase. In this paper, we describe the differential regulation of the mitotic CDK1 dynamics by exogenous cyclin A or a non-degradable cyclin B added to the Xenopus laevis embryo cycling extracts. We showed that the variations in the level of cyclin B modify both CDK1 activity and the timing of the M-phase progression, while the cyclin A levels modify only CDK1 activity without changing the timing of the M-phase events. In consequence, CDC6 regulates the M-phase through endogenous cyclin B, but not cyclin A, which we demonstrated directly by the depletion of cyclin A, and the addition of CDC6 to the cycling extracts. Further, we showed, by p9 precipitation (p9 protein associates with Cyclin-Dependent Kinases, CDK), followed by the Western blotting that CDC6, and the bona fide CDK1 inhibitor Xic1, associate with CDK1 and/or another CDK present in Xenopus embryos, the CDK2. Finally, we demonstrated that the Xic1 temoprarily separates from the mitotic CDK complexes during the peak of CDK1 activity. These data show the differential coordination of the M-phase progression by CDK1/cyclin A and CDK1/cyclin B, confirm the critical role of the CDC6-dependent CDK1 inhibition in this process and show that CDC6 acts through the cyclin B- and not cyclin A/CDK complexes. This CDC6- and cyclin B-dependent mechanism may also depend on the precisely regulated association of Xic1 with the CDK complexes. We postulate that the dissociation of Xic1 from the CDK complexes allows the maximal activation of CDK1 during the M-phase.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献