Biological and mathematical modeling of melanocyte development

Author:

Luciani Flavie123,Champeval Delphine123,Herbette Aurélie123,Denat Laurence123,Aylaj Bouchra4,Martinozzi Silvia123,Ballotti Robert5,Kemler Rolf6,Goding Colin R.7,De Vuyst Florian48,Larue Lionel123,Delmas Véronique123

Affiliation:

1. Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France.

2. CNRS UMR3347, 91405 Orsay, France.

3. INSERM U1021, 91405 Orsay, France.

4. Laboratoire Mathématiques Appliquées aux systèmes, Ecole Centrale Paris, Grande Voie des Vignes, 94235 Chatenay-Malabry Cedex, France.

5. INSERM U895, Equipe 1, 28 Avenue de Valombrose, 06107 Nice Cedex 2, France.

6. Max-Planck Institute of Immunobiology, Department of Molecular Embryology, D-79108 Freiburg, Germany.

7. Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK.

8. Centre de Mathématiques et de leurs applications, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France.

Abstract

We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3