Inactivation of the (β)-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development

Author:

Brault V.1,Moore R.1,Kutsch S.1,Ishibashi M.1,Rowitch D.H.1,McMahon A.P.1,Sommer L.1,Boussadia O.1,Kemler R.1

Affiliation:

1. Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany. kemler@immunbio.mpg.de

Abstract

('bgr;)-Catenin is a central component of both the cadherin-catenin cell adhesion complex and the Wnt signaling pathway. We have investigated the role of (β)-catenin during brain morphogenesis, by specifically inactivating the (β)-catenin gene in the region of Wnt1 expression. To achieve this, mice with a conditional ('floxed') allele of (β)-catenin with required exons flanked by loxP recombination sequences were intercrossed with transgenic mice that expressed Cre recombinase under control of Wnt1 regulatory sequences. (β)-catenin gene deletion resulted in dramatic brain malformation and failure of craniofacial development. Absence of part of the midbrain and all of the cerebellum is reminiscent of the conventional Wnt1 knockout (Wnt1(−)(/)(−)), suggesting that Wnt1 acts through (β)-catenin in controlling midbrain-hindbrain development. The craniofacial phenotype, not observed in embryos that lack Wnt1, indicates a role for (β)-catenin in the fate of neural crest cells. Analysis of neural tube explants shows that (β)-catenin is efficiently deleted in migrating neural crest cell precursors. This, together with an increased apoptosis in cells migrating to the cranial ganglia and in areas of prechondrogenic condensations, suggests that removal of (β)-catenin affects neural crest cell survival and/or differentiation. Our results demonstrate the pivotal role of (β)-catenin in morphogenetic processes during brain and craniofacial development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 562 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3