Affiliation:
1. R and D Lab, Segmentsoft, 70 Bowerbank Dr., Toronto, M2M 2A1 Canada
Abstract
Living organisms need energy to be "alive". Energy is produced by biochemical processing of nutrients. The rate of energy production is called metabolic rate. Metabolism is very important from evolutionary, ecological perspectives, and for organisms' development and functioning. It depends on different parameters, of which organisms' mass is considered as one of the most important. Simple relationships between the mass of organisms and their metabolic rates were empirically discovered a while ago. Such dependence is described by a power function, whose exponent is called allometric scaling coefficient. With the increase of mass the metabolic rate usually increases slower; if mass increases by two times, the metabolic rate increases less than two times. This fact has far reaching implications for organization of life. The fundamental biological and biophysical mechanisms underlying this phenomenon are still not well understood. Here, we show that one of such primary mechanisms relates to transportation of substances, like nutrients and waste, at a cellular level. We show how variations in cell size and associated cellular transportation costs explain the known variance of allometric exponent. The introduced model also includes heat dissipation constraints. The model agrees with experimental observations and reconciles experimental results across different taxa. It ties metabolic scaling to organismal and environmental characteristics; helps defining perspective directions of future researches; allows predicting allometric exponents based on characteristics of organisms and environments they live in.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献