Metabolic allometric scaling model. Combining cellular transportation and heat dissipation constraints

Author:

Shestopaloff Yuri K.1ORCID

Affiliation:

1. R and D Lab, Segmentsoft, 70 Bowerbank Dr., Toronto, M2M 2A1 Canada

Abstract

Living organisms need energy to be "alive". Energy is produced by biochemical processing of nutrients. The rate of energy production is called metabolic rate. Metabolism is very important from evolutionary, ecological perspectives, and for organisms' development and functioning. It depends on different parameters, of which organisms' mass is considered as one of the most important. Simple relationships between the mass of organisms and their metabolic rates were empirically discovered a while ago. Such dependence is described by a power function, whose exponent is called allometric scaling coefficient. With the increase of mass the metabolic rate usually increases slower; if mass increases by two times, the metabolic rate increases less than two times. This fact has far reaching implications for organization of life. The fundamental biological and biophysical mechanisms underlying this phenomenon are still not well understood. Here, we show that one of such primary mechanisms relates to transportation of substances, like nutrients and waste, at a cellular level. We show how variations in cell size and associated cellular transportation costs explain the known variance of allometric exponent. The introduced model also includes heat dissipation constraints. The model agrees with experimental observations and reconciles experimental results across different taxa. It ties metabolic scaling to organismal and environmental characteristics; helps defining perspective directions of future researches; allows predicting allometric exponents based on characteristics of organisms and environments they live in.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference44 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3