The power of Drosophila in modeling human disease mechanisms

Author:

Verheyen Esther M.1ORCID

Affiliation:

1. Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, CanadaV5A 1S6

Abstract

Six years ago, DMM launched a subject collection called ‘Drosophila as a Disease Model’. This collection features Review-type articles and original research that highlight the power of Drosophila research in many aspects of human disease modeling. In the ensuing years, Drosophila research has further expanded to capitalize on genome editing, development of resources, and further interest in studying rare disease mechanisms. In the current issue of DMM, we again highlight the versatility, breadth, and scope of Drosophila research in human disease modeling and translational medicine. While many researchers have embraced the power of the fly, many more could still be encouraged to appreciate the strengths of Drosophila and how such research can integrate across species in a multi-pronged approach. Only when we truly acknowledge that all models contribute to our understanding of human biology, can we take advantage of the scope of current research endeavors.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3