The transition from diet to blood: Exploring homeostasis in the insect haemolymph nutrient pool

Author:

Holdbrook Robert1,Andongma Awawing A.1,Randall Joanna L.1,Reavey Catherine E.1,Tummala Yamini1,Wright Geraldine A.2,Simpson Stephen J.3,Smith Judith A.4,Wilson Kenneth1,Cotter Sheena C.5ORCID

Affiliation:

1. Lancaster Environment Centre Lancaster University Lancaster UK

2. Department of Biology, University of Oxford Oxford UK

3. Charles Perkins Centre The University of Sydney Sydney New South Wales Australia

4. School of Forensic and Applied Sciences University of Central Lancashire Preston Lancashire UK

5. School of Life and Environmental Sciences University of Lincoln Lincoln UK

Abstract

AbstractNutrition is vital to health, but while the link between diet and body nutritional composition is well explored in humans and other vertebrates, this information is not well understood in insects, despite the vital roles they play in ecosystems, and their increasing use as experimental models. Here we used Nutritional Geometry to explore the rapid physiological response to ingested nutrients in the haemolymph nutritional profile of Spodoptera littoralis caterpillars. We ask whether blood nutrients are maintained homeostatically in the face of variable nutritional intake, or if regulation is more flexible for some nutrients than others (allostasis), which allows animals to adapt to stress by responding in a way that prioritises efficiency of responses in the face of trade‐offs. Caterpillars were placed on 1 of 20 diets, systematically varying in their nutrient ratios (protein: carbohydrate) and density (calorie content), and their consumption was measured. After 48 h, caterpillars were bled, and the macronutrient (protein, carbohydrates and lipids) and nutrient metabolite (amino acids and simple sugars) content of the haemolymph was measured. Proteins comprised 93% of the haemolymph macronutrient pool on average and their concentration increased with protein eaten. The amino acid (AA) pool was dominated by five AAs, and the total pool increased with total nutrient intake. However, the ratio of essential to non‐essential AAs increased as the proportion of protein consumed increased. Carbohydrates were tightly controlled, increasing only on the most extreme carbohydrate intakes. Simple sugars were dominated by glucose and trehalose, and overall, the simple sugar pool showed high levels of homeostasis. Rather than strict homeostasis of blood nutritional properties, an allostatic model seemed to be a better fit for blood nutrient regulation in this generalist herbivore. This flexibility in response to the nutritional composition of the diet may, in part, explain how this species has evolved to extreme dietary generalism and may play a role in its worldwide pest status. Given the range of fitness‐related processes affected by the haemolymph, future studies should examine the physiological impacts of blood nutrient variation on reproduction, growth and response to infection and the trade‐offs between them.

Funder

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3