Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches

Author:

Mongeau Jean-Michel1,Demir Alican2,Lee Jusuk2,Cowan Noah J.2,Full Robert J.3

Affiliation:

1. Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA

2. Department of Mechanical Engineering, Johns Hopkins University, MD 21218, USA

3. Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

Abstract

SUMMARY Animals can expend energy to acquire sensory information by emitting signals and/or moving sensory structures. We propose that the energy from locomotion itself could permit control of a sensor, whereby animals use the energy from movement to reconfigure a passive sensor. We investigated high-speed, antenna-mediated tactile navigation in the cockroach Periplaneta americana. We discovered that the passive antennal flagellum can assume two principal mechanical states, such that the tip is either projecting backward or forward. Using a combination of behavioral and robotic experiments, we demonstrate that a switch in the antenna's state is mediated via the passive interactions between the sensor and its environment, and this switch strongly influences wall-tracking control. When the tip of the antenna is projected backward, the animals maintain greater body-to-wall distance with fewer body collisions and less leg–wall contact than when the tip is projecting forward. We hypothesized that distally pointing mechanosensory hairs at the tip of the antenna mediate the switch in state by interlocking with asperities in the wall surface. To test this hypothesis, we performed laser ablation of chemo-mechanosensory hairs and added artificial hairs to a robotic antenna. In both the natural and artificial systems, the presence of hairs categorically increased an antenna's probability of switching state. Antennal hairs, once thought to only play a role in sensing, are sufficient for mechanically reconfiguring the state of the entire antenna when coupled with forward motion. We show that the synergy between antennal mechanics, locomotion and the environment simplifies tactile sensing.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3