Adhesion and friction of the smooth attachment system of the cockroach Gromphadorhina portentosa and the influence of the application of fluid adhesives

Author:

Betz Oliver1ORCID,Frenzel Melina1,Steiner Michael1,Vogt Martin1,Kleemeier Malte2,Hartwig Andreas23,Sampalla Benjamin1,Rupp Frank4,Boley Moritz1,Schmitt Christian1

Affiliation:

1. Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany

2. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, Bremen D-28359, Germany

3. Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., Bremen 28359, Germany

4. University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany

Abstract

ABSTRACT Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa. The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3