Crag/Rab10/Ehbp1 regulate the basolateral transport of Na+K+ATPase in Drosophila photoreceptors

Author:

Nakamura Yuri1,Ochi Yuka1,Satoh Takunori1ORCID,Satoh Akiko K.1ORCID

Affiliation:

1. Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan

Abstract

Cells in situ are often polarized and have multiple plasma membrane domains. To establish and maintain these domains, polarized transport is essential, and its impairment results in genetic disorders. Nevertheless, the underlying mechanisms of polarized transport have not been elucidated. Drosophila photoreceptor offers an excellent model to study this. We found that Rab10 impairment significantly reduced basolateral Na+K+ATPase levels, mislocalizing it to the stalk membrane, a domain of the apical plasma membrane. Furthermore, the shrunken basolateral and the expanded stalk membrane were accompanied with abnormalities in the Golgi cisternae of Rab10-impaired retinas. The deficiencies of Rab10-GEF Crag or the Rab10 effector Ehbp1 phenocopied Rab10 deficiency, indicating that Crag, Rab10, and Ehbp1 work together for polarized trafficking of membrane proteins to the basolateral membrane. These phenotypes were similar to the deficiency of AP1/clathrin, which is known to be involved in the basolateral transport in other systems. Additionally, Crag/Rab10/Ehbp1 colocalized with AP1/clathrin on the trans-side of Golgi stacks. Taken together, these results indicated that AP1/clathrin and Crag/Rab10/Ehbp1 collaborated in polarized basolateral transport, presumably in the budding process in the trans-Golgi network.

Funder

Precursory Research for Embryonic Science and Technology

ok

Sumitomo Foundation for Basic Science Research Projects

Astellas Foundation for Research on Metabolic Disorders

Female Researcher Joint Research Grant from Hiroshima Univ.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3