Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate

Author:

Wang Qi1,Kurosaka Hiroshi1ORCID,Kikuchi Masataka2,Nakaya Akihiro2,Trainor Paul A.34,Yamashiro Takashi1ORCID

Affiliation:

1. Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan

2. Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan

3. Stowers Institute for Medical Research, Kansas City, MO 64110, USA

4. Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA

Abstract

ABSTRACT Cleft palate (CP) is one of the most common congenital craniofacial anomalies in humans and can be caused by either single or multiple genetic and environmental factor(s). With respect to environmental factors, excessive intake of vitamin A during early pregnancy is associated with increased incidence of CP in offspring both in humans and in animal models. Vitamin A is metabolized to retinoic acid (RA); however, the pathogenetic mechanism of CP caused by altered RA signaling during early embryogenesis is not fully understood. To investigate the detailed cellular and molecular mechanism of RA-induced CP, we administered all-trans RA to pregnant mice at embryonic day (E)8.5. In the RA-treated group, we observed altered expression of Sox10, which marks cranial neural crest cells (CNCCs). Disruption of Sox10 expression was also observed at E10.5 in the maxillary component of the first branchial arch, which gives rise to secondary palatal shelves. Moreover, we found significant elevation of CNCC apoptosis in RA-treated embryos. RNA-sequencing comparisons of RA-treated embryos compared to controls revealed alterations in Sonic hedgehog (Shh) signaling. More specifically, the expression of Shh and its downstream genes Ptch1 and Gli1 was spatiotemporally downregulated in the developing face of RA-treated embryos. Consistent with these findings, the incidence of CP in association with excessive RA signaling was reduced by administration of the Shh signaling agonist SAG (Smoothened agonist). Altogether, our results uncovered a novel mechanistic association between RA-induced CP with decreased Shh signaling and elevated CNCC apoptosis.

Funder

Japan Society for the Promotion of Science

Nakatomi Foundation

Takeda Science Foundation

Stowers Institute for Medical Research

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3