Gli2, but notGli1, is required for initial Shh signaling and ectopic activation of the Shh pathway

Author:

Bai C. Brian12,Auerbach Wojtek1,Lee Joon S.1,Stephen Daniel1,Joyner Alexandra L.123

Affiliation:

1. Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA

2. Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA

3. Department of Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA

Abstract

The Shh signaling pathway is required in many mammalian tissues for embryonic patterning, cell proliferation and differentiation. In addition, inappropriate activation of the pathway has been implicated in many human tumors. Based on transfection assays and gain-of-function studies in frog and mouse, the transcription factor Gli1 has been proposed to be a major mediator of Shh signaling. To address whether this is the case in mouse, we generated a Gli1 null allele expressing lacZ. Strikingly, Gli1 is not required for mouse development or viability. Of relevance, we show that all transcription of Gli1 in the nervous system and limbs is dependent on Shh and, consequently, Gli1 protein is normally not present to transduce initial Shh signaling. To determine whether Gli1 contributes to the defects seen when the Shh pathway is inappropriately activated and Gli1 transcription is induced, Gli1;Ptc double mutants were generated. We show that Gli1 is not required for the ectopic activation of the Shh signaling pathway or to the early embryonic lethal phenotype in Ptc null mutants. Of significance, we found instead that Gli2 is required for mediating some of the inappropriate Shh signaling in Ptc mutants. Our studies demonstrate that, in mammals, Gli1 is not required for Shh signaling and that Gli2 mediates inappropriate activation of the pathway due to loss of the negative regulator Ptc.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3