A sky polarization compass in lizards: the central role of the parietal eye

Author:

Beltrami G.1,Bertolucci C.1,Parretta A.23,Petrucci F.24,Foà A.1

Affiliation:

1. Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Via Borsari 46, Ferrara, 44121, Italy

2. Dipartimento di Fisica, Università di Ferrara, Via Borsari 46, Ferrara, 44121, Italy

3. ENEA, Centro Ricerche ‘E. Clementel’, Bologna, 40129, Italy

4. INFN, sezione di Ferrara, Ferrara, 44122, Italy

Abstract

SUMMARYThe present study first examined whether ruin lizards Podarcis sicula are able to orientate using the e-vector direction of polarized light. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze, positioned under an artificial light source producing plane polarized light with a single e-vector, which provided an axial cue. Lizards were subjected to axial training by positioning two identical goals in contact with the centre of two opposite side walls of the Morris water maze. Goals were invisible because they were placed just beneath the water surface, and water was rendered opaque. The results showed that the directional choices of lizards meeting learning criteria were bimodally distributed along the training axis, and that after 90 deg rotation of the e-vector direction of polarized light the lizards directional choices rotated correspondingly, producing a bimodal distribution which was perpendicular to the training axis. The present results confirm in ruin lizards results previously obtained in other lizard species showing that these reptiles can use the e-vector direction of polarized light in the form of a sky polarization compass. The second step of the study aimed at answering the still open question of whether functioning of a sky polarization compass would be mediated by the lizard parietal eye. To test this, ruin lizards meeting learning criteria were tested inside the Morris water maze under polarized light after their parietal eyes were painted black. Lizards with black-painted parietal eyes were completely disoriented. Thus, the present data show for the first time that the parietal eye plays a central role in mediating the functioning of a putative sky polarization compass of lizards.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Initial orientation and homing performances in the lacertid lizard Podarcis siculus;Ethology Ecology & Evolution;2024-07-11

2. ‘Distributed’ vision and the architecture of animal visual systems;Journal of Experimental Biology;2023-11-30

3. Photobehaviours guided by simple photoreceptor systems;Animal Cognition;2023-08-31

4. Brains, Behaviour, and Cognition: Multiple Misconceptions;Health and Welfare of Captive Reptiles;2023

5. Sensory Systems;Health and Welfare of Captive Reptiles;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3