Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae)

Author:

Montealegre-Z Fernando1,Jonsson Thorin1,Robert Daniel1

Affiliation:

1. School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

Abstract

SUMMARYMale field crickets emit pure-tone mating calls by rubbing their wings together. Acoustic radiation is produced by rapid oscillations of the wings, as the right wing (RW), bearing a file, is swept across the plectrum borne on the left wing (LW). Earlier work found the natural resonant frequency (fo) of individual wings to be different, but there is no consensus on the origin of these differences. Previous studies suggested that the frequency along the song pulse is controlled independently by each wing. It has also been argued that the stridulatory file has a variable fo and that the frequency modulation observed in most species is associated with this variability. To test these two hypotheses, a method was developed for the non-contact measurement of wing vibrations during singing in actively stridulating Gryllus bimaculatus. Using focal microinjection of the neuroactivator eserine into the cricket's brain to elicit stridulation and micro-scanning laser Doppler vibrometry, we monitored wing vibration in actively singing insects. The results show significantly lower fo in LWs compared with RWs, with the LW fo being identical to the sound carrier frequency (N=44). But during stridulation, the two wings resonate at one identical frequency, the song carrier frequency, with the LW dominating in amplitude response. These measurements also demonstrate that the stridulatory file is a constant resonator, as no variation was observed in fo along the file during sound radiation. Our findings show that, as they engage in stridulation, cricket wings work as coupled oscillators that together control the mechanical oscillations generating the remarkably pure species-specific song.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera). i. Tegminal generator;Bailey;J. Exp. Biol.,1970

2. The mechanism and efficiency of sound production in mole crickets;Bennet-Clark;J. Exp. Biol.,1970

3. Songs and the physics of sound production;Bennet-Clark,1989

4. Insect sound production: transduction mechanisms and impedance matching;Bennet-Clark;Symp. Soc. Exp. Biol.,1995

5. Size and scale effects as constraints in insect sound communication;Bennet-Clark;Philos. Trans. R. Soc. Lond. B,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3