Elastic and length-force characteristics of the gastrocnemius of the hopping mouse (Notomys alexis) and the rat (Rattus norvegicus).

Author:

Ettema G J1

Affiliation:

1. Department of Anatomical Sciences, University of Queensland, Australia.

Abstract

The aim of this study was to compare the contractile and series elastic properties of terrestrial mammals that use bipedal versus quadrupedal gaits. The gastrocnemius muscle of the hopping mouse (body mass 30.2 +/- 2.4 g, mean +/- S.D.) and the rat (313 +/- 10.7 g) were compared with data from the literature for the wallaby and the kangaroo rat to distinguish scaling effects and locomotion-related effects on muscle properties. Contractile length-force properties and series elastic stiffness were measured in situ during maximal tetanic contractions. The rat had a larger muscle-fibre-to-tendon-length ratio. The rat and hopping mouse showed similar normalised length-force characteristics of the gastrocnemius. Normalised stiffness in the hopping mouse was higher. The hopping mouse showed a higher capacity to store elastic energy per unit of contractile work capacity, as well as per unit of body mass. Accounting for body size differences, the rat had a smaller relative muscle mass and thus smaller work capacity than the three hopping animals considered. This is an agreement with a quadrupedal versus bipedal locomotion style. The differences in contractile and elastic properties of the gastrocnemius of the rat and hopping mouse seem to be closely related to locomotion patterns. Small animals seem to be able to utilise the storage and release of elastic energy to a far lesser extent than larger animals. However, even in animals as small as hopping mice, the storage and utilisation of elastic energy during locomotion is of functional significance and probably depends on locomotor behaviour.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3