Contraction dynamics and power production of pink muscle of the scup (Stenotomus chrysops).

Author:

Coughlin D J1,Zhang G1,Rome L C1

Affiliation:

1. University of Pennsylvania, Department of Biology, Leidy Laboratory, Philadelphia 19104, USA.

Abstract

Although the contribution of red muscle to sustained swimming in fish has been studied in detail in recent years, the role of pink myotomal muscle has not received attention. Pink myotomal muscle in the scup (Stenotomus chrysops) lies just medial to red muscle, has the same longitudinal fibre orientation and is recruited along with the red muscle during steady sustainable swimming. However, pink muscle has significantly faster rates of relaxation, and the maximum velocity of shortening of pink muscle (7.26 +/- 0.18 muscle lengths s-1, N = 9, at 20 degrees C, and 4.46 +/- 0.15 muscle lengths s-1, N = 6, at 10 degrees C; mean +/- S.E.M.) is significantly faster than that of red muscle. These properties facilitate higher mass-specific maximum oscillatory power production relative to that of red muscle at frequencies similar to the tailbeat frequency at maximum sustained swimming speeds in scup. Additionally, pink muscle is found in anatomical positions in which red muscle is produces very little power during swimming: the anterior region of the fish, which undergoes the lowest strain during swimming. Pink muscle produces more oscillatory power than red muscle under low-strain conditions (+/- 2-3%) and this may allow pink muscle to supplement the relatively low power generated by red muscle in the anterior regions of swimming scup.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3