Affiliation:
1. University of Pennsylvania, Department of Biology, Leidy Laboratory, Philadelphia 19104, USA.
Abstract
Although the contribution of red muscle to sustained swimming in fish has been studied in detail in recent years, the role of pink myotomal muscle has not received attention. Pink myotomal muscle in the scup (Stenotomus chrysops) lies just medial to red muscle, has the same longitudinal fibre orientation and is recruited along with the red muscle during steady sustainable swimming. However, pink muscle has significantly faster rates of relaxation, and the maximum velocity of shortening of pink muscle (7.26 +/- 0.18 muscle lengths s-1, N = 9, at 20 degrees C, and 4.46 +/- 0.15 muscle lengths s-1, N = 6, at 10 degrees C; mean +/- S.E.M.) is significantly faster than that of red muscle. These properties facilitate higher mass-specific maximum oscillatory power production relative to that of red muscle at frequencies similar to the tailbeat frequency at maximum sustained swimming speeds in scup. Additionally, pink muscle is found in anatomical positions in which red muscle is produces very little power during swimming: the anterior region of the fish, which undergoes the lowest strain during swimming. Pink muscle produces more oscillatory power than red muscle under low-strain conditions (+/- 2-3%) and this may allow pink muscle to supplement the relatively low power generated by red muscle in the anterior regions of swimming scup.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献