Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating temperature conditions

Author:

Claireaux G,Webber D,Kerr S,Boutilier R

Abstract

Atlantic cod (Gadus morhua L.), acclimated to 5 °C, were equipped with ultrasonic transmitters which allowed the continuous monitoring of their vertical movements and heart rate. Fish were then placed in a 125 m3 tower tank in which the various thermal conditions they encounter in their natural environment were reproduced. Physiological and behavioural responses of cod were followed in parallel to the induced environmental changes. The experimental conditions studied in the tower tank were also reproduced in a swimming respirometer, where oxygen consumption and heart rate could be monitored within the activity range of a free-swimming animal. In a homogeneous water column, a rise in temperature induced marked increases in fish swimming activity, heart rate and heart beat-to-beat variability. In a thermally stratified environment, voluntary activity also increased when the thermal structure of the water column was altered, though no temperature-dependent changes in heart rate were observed. In this case, fish avoided the new temperature conditions, exhibiting distinct thermoregulatory behaviour. Stratification of the water column also prompted daily cyclic changes in fish distribution, animals tending to be in deeper and colder water layers during the day and in shallower and warmer layers at night. Respirometry experiments revealed that the thermoregulatory behaviour observed in free-ranging fish was probably driven by the energetic expedient of maintaining the physiological status quo ­ i.e. avoiding bioenergically costly reacclimation processes. Indeed, acute temperature increases or decreases of 2.5 °C led to marked differences in oxygen consumption, with metabolic rate changes of 15 and 30 %, respectively. The persistent linear relationship between heart rate and oxygen consumption allowed us to estimate, from the heart rate recorded in free-swimming fish, the entire range of metabolic responses that cod underwent voluntarily while experiencing a thermally stratified water column. The most profound metabolic effect, however, was observed with feeding, when oxygen consumption increased by as much as 80 %, resulting in an estimated 90 % reduction in their subsequent scope for activity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3