Ballistics and visual targeting in flea-beetles (Alticinae)

Author:

Brackenbury J,Wang R

Abstract

The kinematics of jumping was measured in seven species of flea-beetle (Alticinae). The accuracy of two species during targeted jumping was also investigated. Take-off accelerations ranged from 15 to 270 times gravity. Rotational energy accounted for 4­21 % of the total translational energy. Two species were able to control jump direction and landing. When presented with a high-contrast optical grid, Chalcoides aurata exhibited two alternative jump modes. In mode 1 or wingless jumping, the body rotated continuously, the insect rarely landed on its feet and no discrimination was shown between landing on the black or white stripes of the grid. In mode 2 jumping, recruitment of the wings eliminated rotation and virtually ensured a feet-first landing; there was also a significant preference for jumping towards the black stripes. Aphthona atrocaerulea could alter take-off angle in order to strike targets at inclinations of 0­90 ° to the horizontal. Targets consisting of a white illuminated cross on a black background were struck with equal accuracy, regardless of distance (within the normal jumping range). The beetle aimed specifically for the centre of the target and not for the high-contrast boundary. The distribution of hits about the target centre was radially symmetrical. Although take-off was wingless, rotation could be abolished in mid jump, within 10 ms, by extending the wings. This virtually guaranteed a feet-first landing. Targeting accuracy is discussed in the context of biomechanical steering mechanisms and visual control.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3