Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs

Author:

Li Chengpei,Xu Aaron J.,Beery Eric,Hsieh S. Tonia,Kane Suzanne AmadorORCID

Abstract

AbstractHow animals jump and land on a variety of surfaces is an ecologically important problem relevant to bioinspired robotics. We investigated this topic in the context of the jumping biomechanics of the planthopperLycorma delicatula(the spotted lanternfly, SLF), an invasive insect in the US that jumps frequently for dispersal, locomotion, and predator evasion. High-speed video was used to analyze jumping by SLF nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m/s) and accelerations (800-1000 ms-2), with midair trajectories consistent with zero-drag ballistic motion without steering. Despite rotating rapidly (5-45 Hz) in the air about time-varying axes of rotation, they landed successfully in 58.9% of trials; they also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the emerging importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of SLFs and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of their measured rotational kinematics. This analysis showed that SLF nymphs are able to use posture changes and drag torques to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.SummaryHigh-speed video revealed that juvenile spotted lanternflies are adept at landing after tumbling rapidly midair during jumping. We present computer simulations and realistic 3D models to help explain these abilities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3