Abstract
The wind-evoked escape behavior of freely ranging crickets (Gryllus bimaculatus) was studied using high-speed video and film analysis. The escape response can be of three types: a turn, a jump or a turn + jump. Any of these can be followed by running. The turn is similar to that of the cockroach, in terms of the details of body and leg movements. A jump occurs only when the cricket has its back to the wind, either because the stimulus came approximately from behind or because the cricket had first turned away from the wind and then jumped. The jump, like that of locust, requires some form of energy storage and quick release to obtain the necessary power. Locusts use long-term co-activation of antagonistic leg motor neurons to produce mechanical energy storage. By contrast, crickets do not appear to co-activate antagonistic leg motor neurons. Possible alternative energy storage and release mechanisms are discussed.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献