Supra-orbital whiskers act as wind-sensing antennae in rats

Author:

Mugnaini Matias,Mehrotra Dhruv,Davoine Federico,Sharma Varun,Mendes Ana Rita,Gerhardt Ben,Concha-Miranda Miguel,Brecht MichaelORCID,Clemens Ann M.ORCID

Abstract

We know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.5 m/s) and high (1.5 m/s) airflow. Whisker tips showed increasing movement from low to high airflow conditions, with all whisker tips moving during high airflow. Low airflow conditions—most similar to naturally occurring wind stimuli—engaged whisker tips differentially. Most whiskers moved little, but the long supra-orbital (lSO) whisker showed maximal displacement, followed by the α, β, and A1 whiskers. The lSO whisker differs from other whiskers in its exposed dorsal position, upward bending, length and thin diameter. Ex vivo extracted lSO whiskers also showed exceptional airflow displacement, suggesting whisker-intrinsic biomechanics mediate the unique airflow-sensitivity. Micro computed tomography (micro-CT) revealed that the ring-wulst—the follicle structure receiving the most sensitive afferents—was more complete/closed in the lSO, and other wind-sensitive whiskers, than in non-wind-sensitive whiskers, suggesting specialization of the supra-orbital for omni-directional sensing. We localized and targeted the cortical supra-orbital whisker representation in simultaneous Neuropixels recordings with D/E-row whisker barrels. Responses to wind-stimuli were stronger in the supra-orbital whisker representation than in D/E-row barrel cortex. We assessed the behavioral significance of whiskers in an airflow-sensing paradigm. We observed that rats spontaneously turn towards airflow stimuli in complete darkness. Selective trimming of wind-responsive whiskers diminished airflow turning responses more than trimming of non-wind-responsive whiskers. Lidocaine injections targeted to supra-orbital whisker follicles also diminished airflow turning responses compared to control injections. We conclude that supra-orbital whiskers act as wind antennae.

Funder

Marine Biological Laboratory

National Institute of Mental Health

Humboldt-Universität zu Berlin

German federal ministry of education and research

Simons Initiative for the Developing Brain

QuantOCancer

Grass Foundation

Stanley W. Watson Education Fund

IBRO-USCRC Fellowship

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3