The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis

Author:

Tsuji-Tamura Kiyomi1ORCID,Morino-Koga Saori1,Suzuki Shingo2,Ogawa Minetaro1

Affiliation:

1. Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan

2. Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan

Abstract

ABSTRACT Elongation of vascular endothelial cells (ECs) is an important process in angiogenesis; however, the molecular mechanisms remain unknown. The actin-crosslinking protein TAGLN (transgelin, also known as SM22 or SM22α) is abundantly expressed in smooth muscle cells (SMCs) and is widely used as a canonical marker for this cell type. In the course of studies using mouse embryonic stem cells (ESCs) carrying an Tagln promoter-driven fluorescence marker, we noticed activation of the Tagln promoter during EC elongation. Tagln promoter activation co-occurred with EC elongation in response to vascular endothelial growth factor A (VEGF-A). Inhibition of phosphoinositide 3-kinase (PI3K)–Akt signaling and mTORC1 also induced EC elongation and Tagln promoter activation. Human umbilical vein endothelial cells (HUVECs) elongated, activated the TAGLN promoter and increased TAGLN transcripts in an angiogenesis model. Genetic disruption of TAGLN augmented angiogenic behaviors of HUVECs, as did the disruption of TAGLN2 and TAGLN3 genes. Tagln expression was found in ECs in mouse embryos. Our results identify TAGLN as a putative regulator of angiogenesis whose expression is activated in elongating ECs. This finding provides insight into the cytoskeletal regulation of EC elongation and an improved understanding of the molecular mechanisms underlying the regulation of angiogenesis.

Funder

Japan Society for the Promotion of Science

Kumamoto University

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3