Affiliation:
1. Southern Methodist University, USA
Abstract
Abstract
Running performance, energy requirements, and musculoskeletal stresses are directly related to the action-reaction forces between the limb and ground. For human runners, the force-time patterns from individual footfalls can vary considerably across speed, foot-strike, and footwear conditions. Here, we used four human footfalls with distinctly different vertical force-time waveform patterns to evaluate whether a basic mechanical model might explain all of them. Our model partitions the body's total mass (1.0 Mb) into two invariant mass fractions (lower-limb=0.08, remaining body mass=0.92) and allows the instantaneous collisional velocities of the former to vary. The best fits achieved (R2 range: 0.95-0.98, mean=0.97±0.01) indicate that the model is capable of accounting for nearly all of the variability observed in the four waveform types tested: barefoot jog, rear-foot strike run, fore-foot strike run, and fore-foot strike sprint. We conclude that different running ground reaction force-time patterns may have the same mechanical basis.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献