Effect of increased running speed and weight carriage on peak and cumulative tibial loading

Author:

Rice Hannah1,Seynnes Olivier1,Werkhausen Amelie1

Affiliation:

1. Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway

Abstract

AbstractIntroductionTibial stress injuries are a burdensome injury among military recruits. Military activities include running and the carriage of additional weight, and this may be related to the high risk of bone stress injuries. The aim of this study was to quantify tibial loading when running at two different speeds, with and without additional weight, and to quantify their combined influence.MethodsFourteen male distance runners who ran at least 40 km per week ran barefoot on a force‐instrumented treadmill in four conditions representing preferred running speed (mean (SD) 3.1 (0.3) m/s) and 20% increased running speed (3.8 (0.4) m/s), with and without 20% of body weight carried in a weight vest. Kinematics and kinetics were synchronously collected. Bending moments were estimated about the medial‐lateral axis of the tibial centroid located 1/3rd of the length from distal to proximal. Static equilibrium was ensured at each 1% of stance. Peak bending moments were obtained in addition to cumulative‐weighted loading, where weighted loading accounted for the relative importance of the magnitude of the bending moment and the quantity of loading using a bone‐dependent weighting factor.ResultsThere were no interaction effects for running speed and weight carriage on peak or cumulative tibial loading. Running at a 20% faster speed increased peak and cumulative loading per kilometer by 8.0% (p < 0.001) and 4.8% (p < 0.001), respectively. Carriage of an additional 20% of body weight increased peak and cumulative loading per kilometer by 6.6% (p < 0.001) and 8.5% (p < 0.001), respectively.InterpretationIncreasing the physical demand of running by increasing speed or weight carriage increased peak tibial loading and cumulative tibial loading per kilometer, and this may increase the risk of tibial stress injury. Running speed and weight carriage independently influenced tibial loading.

Publisher

Wiley

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3