A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds

Author:

Spedding G. R.1,Rosén M.2,Hedenström A.2

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA

2. Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden

Abstract

SUMMARYIn view of the complexity of the wing-beat kinematics and geometry, an important class of theoretical models for analysis and prediction of bird flight performance entirely, or almost entirely, ignores the action of the wing itself and considers only the resulting motions in the air behind the bird. These motions can also be complicated, but some success has previously been recorded in detecting and measuring relatively simple wake structures that can sometimes account for required quantities used to estimate aerodynamic power consumption. To date, all bird wakes, measured or presumed,seem to fall into one of two classes: the closed-loop, discrete vortex model at low flight speeds, and the constant-circulation, continuous vortex model at moderate to high speeds. Here, novel and accurate quantitative measurements of velocity fields in vertical planes aligned with the freestream are used to investigate the wake structure of a thrush nightingale over its entire range of natural flight speeds. At most flight speeds, the wake cannot be categorised as one of the two standard types, but has an intermediate structure, with approximations to the closed-loop and constant-circulation models at the extremes. A careful accounting for all vortical structures revealed with the high-resolution technique permits resolution of the previously unexplained wake momentum paradox. All the measured wake structures have sufficient momentum to provide weight support over the wingbeat. A simple model is formulated and explained that mimics the correct, measured balance of forces in the downstroke- and upstroke-generated wake over the entire range of flight speeds. Pending further work on different bird species, this might form the basis for a generalisable flight model.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 206 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3