Affiliation:
1. University of Connecticut School of Medicine 1 Department of Neuroscience , , 263 Farmington Avenue, Farmington, CT 06030 , USA
2. The Jackson Laboratory for Genomic Medicine 2 , Farmington, CT 06032 , USA
Abstract
ABSTRACT
Central nervous system projection neurons fail to spontaneously regenerate injured axons. Targeting developmentally regulated genes in order to reactivate embryonic intrinsic axon growth capacity or targeting pro-growth tumor suppressor genes such as Pten promotes long-distance axon regeneration in only a small subset of injured retinal ganglion cells (RGCs), despite many RGCs regenerating short-distance axons. A recent study identified αRGCs as the primary type that regenerates short-distance axons in response to Pten inhibition, but the rare types which regenerate long-distance axons, and cellular features that enable such response, remained unknown. Here, we used a new method for capturing specifically the rare long-distance axon-regenerating RGCs, and also compared their transcriptomes with embryonic RGCs, in order to answer these questions. We found the existence of adult non-α intrinsically photosensitive M1 RGC subtypes that retained features of embryonic cell state, and showed that these subtypes partially dedifferentiated towards an embryonic state and regenerated long-distance axons in response to Pten inhibition. We also identified Pten inhibition-upregulated mitochondria-associated genes, Dynlt1a and Lars2, which promote axon regeneration on their own, and thus present novel therapeutic targets.
Funder
School of Medicine, University of Connecticut
National Institutes of Health
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献