Retinoic acid regulates endothelial cell proliferation during vasculogenesis

Author:

Lai Lihua123,Bohnsack Brenda L.234,Niederreither Karen345,Hirschi Karen K.12346

Affiliation:

1. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,USA

2. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA

3. Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA

4. Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA

5. Department of Medicine, Baylor College of Medicine, Houston, TX 77030,USA

6. Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA

Abstract

A dietary deficiency of vitamin A is associated with cardiovascular abnormalities in avian and murine systems. Retinoic acid (RA) is the active metabolite of vitamin A and whether it directly regulates mammalian blood vessel formation has not been determined and is investigated herein. We used mice rendered RA-deficient via targeted deletion of retinaldehyde dehydrogenase 2 (Raldh2-/-), the enzyme required to produce active RA in the embryo. Histological examination at E8.0-8.5, prior to cardiac function and systemic blood circulation, revealed that capillary plexi formed in Raldh2-/- yolk sacs and embryos, but were dilated, and not appropriately remodeled or patterned. Raldh2-/- endothelial cells exhibited significantly increased expression of phosphohistone 3 and decreased expression of p21 and p27, suggesting that RA is required to control endothelial cell cycle progression during early vascular development. Uncontrolled endothelial cell growth, in Raldh2-/- mutants, was associated with decreased endothelial cell maturation, disrupted vascular plexus remodeling and lack of later stages of vessel assembly, including mural cell differentiation. Maternally administrated RA restored endothelial cell cycle control and vascular patterning. Thus, these data indicate that RA plays a crucial role in mammalian vascular development; it is required to control endothelial cell proliferation and vascular remodeling during vasculogenesis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3