A lethal fungal pathogen directly alters tight junction proteins in the skin of a susceptible amphibian

Author:

Gauberg J.12ORCID,Wu N.1ORCID,Cramp R. L.1,Kelly S. P.2,Franklin C. E.1ORCID

Affiliation:

1. School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia

2. Department of Biology, York University, Toronto, ON, Canada

Abstract

Bacterial and viral pathogens can weaken epithelial barriers by targeting and disrupting tight junction (TJ) proteins. Comparatively, however, little is known about the direct effects of fungal pathogens on TJ proteins and their expression. The disease, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is threatening amphibian populations worldwide. Bd is known to infect amphibian skin and disrupt cutaneous osmoregulation. However, exactly how this occurs is poorly understood. This study considered the impact of Bd infection on the barrier properties of the Australian green tree frog (Litoria caerulea) epidermis by examining how inoculation of animals with Bd influenced the paracellular movement of FITC-dextran (4 kDa, FD-4) across the skin in association with alterations in the mRNA and protein abundance of select TJ proteins of the epidermal TJ complex. It was observed that Bd infection increased paracellular movement of FD-4 across the skin linearly with fungal infection load. In addition, Bd infection increased transcript abundance of the tricellular TJ (tTJ) protein tricellulin (tric) as well as the bicellular TJ (bTJ) proteins occludin (ocln), claudin (cldn) -1, -4 and the scaffolding TJ protein zonula occludens-1 (zo-1). However, while Tric protein abundance increased in accord with changes in transcript abundance, protein abundance of Cldn-1 was significantly reduced and Ocln protein abundance was unchanged. Data indicate that disruption of cutaneous osmoregulation in L. caerulea following Bd infection occurs, at least in part, by an increase in epidermal paracellular permeability in association with compromised integrity of the epidermal TJ complex.

Funder

Natural Sciences and Engineering Research Council of Canada

Australian Research Council

Company of Biologists

Canadian Society of Zoologists

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3