In ovo temperature manipulation influences embryonic motility and growth of limb tissues in the chick (Gallus gallus)

Author:

Hammond Christina L.1,Simbi Biggy H.1,Stickland Neil C.1

Affiliation:

1. Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK

Abstract

SUMMARY The chick embryo, developing in the egg, is an ideal system in which to investigate the effects of incubation environment on the development of the embryo. We show that raising the temperature of the eggs by just one degree,from 37.5°C to 38.5°C, during embryonic days (ED) 4–7 causes profound changes in development. We demonstrate that embryonic movement is significantly increased in the chicks raised at 38.5°C both during the period in which they are at the higher temperature but also 4 days after their return to the control temperature. Concomitant with this increase in embryonic activity, the embryos raised at higher temperature grow to significantly heavier weights and exhibit significantly longer leg bones (tibia and tarsus)than the controls from ED12 onwards, although mineralization occurs normally. Additionally, the number of leg myonuclei is increased from ED12 in the embryos raised at the higher temperature. This is likely to promote greater leg muscle growth later in development, which may provide postural stability to the chicks posthatch. These changes are similar to those seen when drugs are injected to increase embryonic activity. We therefore believe that the increased embryonic activity provides a mechanism that can explain the increased growth of leg muscle and bone seen when the eggs are incubated for 3 days at higher temperature.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3