Affiliation:
1. Swedish University of Agricultural Sciences, Sweden
Abstract
Summary
Mosquitoes rely on carbon dioxide (CO2) to detect and orient towards their blood hosts. However, the variable and rapid fluctuations of atmospheric CO2 concentrations may impact the host-seeking behaviour of mosquitoes. In this study, we analysed the effect of transient elevated background levels of CO2 on the host-seeking behaviour and the physiological characteristics of the CO2-sensitive olfactory receptor neurones (ORNs) in female yellow fever mosquitoes, Aedes aegypti. We show that the take off and source contact behaviour of Ae. aegypti is impeded at elevated background levels of CO2 as a result of masking of the stimulus signal. The mechanism underlying this masking during take off behaviour is one of sensory constraint. We show that the net response of the CO2-ORNs regulates this CO2-related behaviour. Since these neurones themselves are not habituated or fatigued by the transient elevation of background CO2, we propose that habituation of second order neurones in response to the elevated CO2-ORN activity could be one mechanism by which the net response is transduced by the olfactory system. The findings from this study may help to predict future shifts in mosquito-host interactions and consequently to predict vectorial capacity in the light of climate change.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献